Calibration Mixtures for Improving Accuracy of Stable Isotope Measurements Tracey Jacksier¹, M. C. Matthew², Jack de Jong³ #### Errors and Uncertainties The calibration of an analyser is a measure of the equipment trueness by a comparison between the result on the analyzer and a reference material. Analytical uncertainty originates from 3 principle sources. The objective is to minimize these sources. - Reference Material (U_s) 1.0% - Analyzer Calibration (U_C) 0.8% - Analyzer Precisions (U_D) 0.4% "Propagation of Error" Calculation. Accuracy $(U_T) = \pm \sqrt{(1.0)^2 + (0.8)^2 + (0.4)^2}$ Accuracy $(U_T) = \pm 1.3\%$ Achieving an accuracy of less than the reference material is **not possible**. ### Isotopic Mixture Production Does fractionation occur when making batches of identical mixtures? Do cylinders from the same batch have the same δ values? Consider a mixture made from ¹⁵N₂O / N₂¹⁸O. | | δ^{15} N avg | δ^{15} N stdev | δ^{18} O avg | δ^{18} O stdev | N | |--------|---------------------|-----------------------|---------------------|-----------------------|----| | A1 | 0.063 | 0.039 | -3.143 | 0.067 | 15 | | A2 | 0.057 | 0.049 | -3.152 | 0.045 | 20 | | A3 | 0.056 | 0.042 | -3.140 | 0.064 | 28 | | Pooled | 0.058 | 0.043 | -3.145 | 0.059 | 63 | Cylinder filling as a function of manifold and cylinder position vs. Direct filling from mother cylinder. | δ^{13} C Methane | | | | | | | δ^2 H Methane | | | | | | | |-------------------------|----------|-------|-------|-------|-------|-------|----------------------|-----|-----|-----|-------|-------|-------| | | Cylinder | #1 | #2 | #3 | avg | stdev | RSD | #1 | #2 | #3 | avg | stdev | RSD | | Direct 1 | 519 | -40.4 | -40.4 | -40.5 | -40.4 | 0.06 | 0.14% | -59 | -59 | -59 | -59 | 0.00 | 0% | | Direct 2 | 521 | -40.5 | -40.5 | -40.5 | -40.5 | 0.00 | 0% | -60 | -59 | -59 | -59.3 | 0.58 | 0.97% | | Manifold 1 | 560 | -40.5 | -40.4 | -40.4 | -40.4 | 0.06 | 0.14% | -58 | -58 | -58 | -58 | 0.00 | 0% | | Manifold 2 | 596 | -40.4 | -40.5 | -40.3 | -40.4 | 0.10 | 0.25% | -59 | -60 | -59 | -59.3 | 0.58 | 0.97% | | Manifold 3 | 597 | -40.4 | -40.4 | -40.4 | -40.4 | 0.00 | 0% | -59 | -61 | -60 | -60 | 1.00 | 1.67% | | Pooled | | | | | -40.4 | 0.06 | 0.15% | | | | -59.1 | 0.83 | 1.41% | Fractionation during cylinder filling **is not** an issue when proprietary filling technologies are utilized. Brian N. Popp, Professor University of Hawaii, SOEST, Department of Geology & Geophysics 1680 East-West Road, Honolulu, Hawaii 96822. Note: δ^{15} N and δ^{18} O are reported as relative to an internal standard. ## Adjusting Isotope Ratios 10 different isotopologues: C-H Atomic Permutations ¹³CH₄, ¹³CDH₃, ¹³CD2H₂, ¹³CD₃H, ¹³CD₄ / ¹²CH₄, ¹²CDH₃, ¹²CD2H₂, ¹²CD₃H, ¹²CD₄ Blending Map for an Adjusted Ratio Mixture of Alkanes. | Adjusted source material Std | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |------------------------------|----------------------------|------|--------------------------|-------------------------------|--------------------------------------|--------------------------|----------------------------------|-------------------|-------------------|-------------------|-------------------| | | H ₂ S % | He % | CO ₂ % | $N_{_2}$ % | C ₁ % | C ₂ % | C ₃ % | iC ₄ % | nC ₄ % | iC ₅ % | nC ₅ % | | Final Composition | 2.5 δ^{34} S + 10 | 0.5 | δ^{13} CO $_2$ -8 | $\delta^{15} \mathbf{N}_2$ -5 | $7 \ \delta^{13}$ C ₁ -45 | δ^{13} C $_2$ -28 | δ^{13} C ₃ -30 | 0.5 | 1.2 | 0.3 | 0.3 | | | | | | | δDC_1 -210 | δDC_2 -150 | δDC ₃ -120 | | | | | #### Summary - Errors and uncertainties are a combination of several principle sources which need to be minimized to achieve desired accuracy. - Filling protocols have been developed and demonstrated to discount effects of mixture fractionation during production. - Custom mixtures can be manufactured in a wide range of concentrations and δ values.