Calibration Mixtures for Improving Accuracy of Stable Isotope Measurements

Tracey Jacksier¹, M. C. Matthew², Jack de Jong³

Errors and Uncertainties

The calibration of an analyser is a measure of the equipment trueness by a comparison between the result on the analyzer and a reference material.

Analytical uncertainty originates from 3 principle sources. The objective is to minimize these sources.

- Reference Material (U_s) 1.0%
- Analyzer Calibration (U_C) 0.8%
- Analyzer Precisions (U_D) 0.4%

"Propagation of Error" Calculation. Accuracy $(U_T) = \pm \sqrt{(1.0)^2 + (0.8)^2 + (0.4)^2}$ Accuracy $(U_T) = \pm 1.3\%$

Achieving an accuracy of less than the reference material is **not possible**.

Isotopic Mixture Production

Does fractionation occur when making batches of identical mixtures? Do cylinders from the same batch have the same δ values? Consider a mixture made from ¹⁵N₂O / N₂¹⁸O.

	δ^{15} N avg	δ^{15} N stdev	δ^{18} O avg	δ^{18} O stdev	N
A1	0.063	0.039	-3.143	0.067	15
A2	0.057	0.049	-3.152	0.045	20
A3	0.056	0.042	-3.140	0.064	28
Pooled	0.058	0.043	-3.145	0.059	63

Cylinder filling as a function of manifold and cylinder position vs. Direct filling from mother cylinder.

δ^{13} C Methane							δ^2 H Methane						
	Cylinder	#1	#2	#3	avg	stdev	RSD	#1	#2	#3	avg	stdev	RSD
Direct 1	519	-40.4	-40.4	-40.5	-40.4	0.06	0.14%	-59	-59	-59	-59	0.00	0%
Direct 2	521	-40.5	-40.5	-40.5	-40.5	0.00	0%	-60	-59	-59	-59.3	0.58	0.97%
Manifold 1	560	-40.5	-40.4	-40.4	-40.4	0.06	0.14%	-58	-58	-58	-58	0.00	0%
Manifold 2	596	-40.4	-40.5	-40.3	-40.4	0.10	0.25%	-59	-60	-59	-59.3	0.58	0.97%
Manifold 3	597	-40.4	-40.4	-40.4	-40.4	0.00	0%	-59	-61	-60	-60	1.00	1.67%
Pooled					-40.4	0.06	0.15%				-59.1	0.83	1.41%

Fractionation during cylinder filling **is not** an issue when proprietary filling technologies are utilized.

Brian N. Popp, Professor University of Hawaii, SOEST, Department of Geology & Geophysics 1680 East-West Road, Honolulu, Hawaii 96822. Note: δ^{15} N and δ^{18} O are reported as relative to an internal standard.

Adjusting Isotope Ratios

10 different isotopologues: C-H Atomic Permutations

¹³CH₄, ¹³CDH₃, ¹³CD2H₂, ¹³CD₃H, ¹³CD₄ / ¹²CH₄, ¹²CDH₃, ¹²CD2H₂, ¹²CD₃H, ¹²CD₄

Blending Map for an Adjusted Ratio Mixture of Alkanes.

Adjusted source material Std	1	2	3	4	5	6	7	8	9	10	11
	H ₂ S %	He %	CO ₂ %	$N_{_2}$ %	C ₁ %	C ₂ %	C ₃ %	iC ₄ %	nC ₄ %	iC ₅ %	nC ₅ %
Final Composition	2.5 δ^{34} S + 10	0.5	δ^{13} CO $_2$ -8	$\delta^{15} \mathbf{N}_2$ -5	$7 \ \delta^{13}$ C ₁ -45	δ^{13} C $_2$ -28	δ^{13} C ₃ -30	0.5	1.2	0.3	0.3
					δDC_1 -210	δDC_2 -150	δDC ₃ -120				

Summary

- Errors and uncertainties are a combination of several principle sources which need to be minimized to achieve desired accuracy.
- Filling protocols have been developed and demonstrated to discount effects of mixture fractionation during production.
- Custom mixtures can be manufactured in a wide range of concentrations and δ values.